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Predictability at ISI time scales: perfect model 
and perfect ensemble 
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Predictability at ISI time scales: 
imperfect model 

2s c

2

s c

2

Forecast error (imperfect) 

Ensemble-mean error (imperfect) 

Forecast Lead Time 

V
ar

ia
n

ce
/s

q
u

ar
ed

 e
rr

o
r 

ISI 

Dispersion (imperfect) 

7/31/13 ESPC/NUOPC Multi-Model Ensembles 3 



Predictability at ISI time scales: multi-
model ensemble 
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Notes/Questions 

• ISI time scales are beyond deterministic and 
probabilistic error saturation for weather 

• Expect saturation of ensemble mean error to be 
lower when: 
– multi-model spatially varying biases cancel 
– apparently random model errors cancel each other 

 
• Is spread meaningful in very slow (predictable) 

modes, or are we just dealing with slowly varying 
model errors that cancel? 
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Model inter-comparisons 

From Reichler, Thomas, Junsu Kim, 2008: How Well Do Coupled Models Simulate Today's Climate?. Bull. Amer. Meteor. Soc., 89, 303–311. 
doi: http://dx.doi.org/10.1175/BAMS-89-3-303 
 

Reanalysis 

Pre-industrial 

Current climate 
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Multi-model ensemble mean: why 
does it usually improve skill? 

• Model forecasts have conditional errors that 
appear random, and are evenly distributed 
about the observations 

• Each model’s systematic errors also cancel out 
systematically  

 

Answer is still a bit unclear. Does it matter? 
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Different attractor structures 

Model 1: fixed point Model 2: fixed point Model 3: strange attractor

• Same Lorenz 1963 system with different parameter values can substantially alter 
the dynamics  

• Exchange information amongst the models by nudging each model toward the 
others; tune coefficients by minimizing the ensemble mean squared error 
 

Plots courtesy Frank Selten, KNMI, and the SUMO project 

Truth 
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Coupled models: displaced attractors 

Model 1 Model 2 Model 3

Put differently: the models form a consensus

Synchronization of chaotic systems is a well-known phenomenon

Truth 

• Fixed-point attractors are nudged to chaotic motion 
• Attractors remain systematically biased and on opposite sides from the truth 

 
Plots courtesy Frank Selten, KNMI, and the SUMO project 
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Combination of nudged models from two different view points

7/31/13 ESPC/NUOPC Multi-Model Ensembles 10 

• Resulting ensemble mean is negligibly different from the truth. 
• Can be thought of as a calibration. 
 
Plots courtesy Frank Selten, KNMI, and the SUMO project 

 



Calibration requirements 
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A common approach:  
quantile mapping 
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Monthly-avg precip forecasts  
6-month forecasts Forecasts initialized Jan 
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• ECMWF ensemble forecasts for 2003 for a river basin in Bangledesh 
• Quantile mapping improves forecasts compared to obs (dashed) 
• Forecast error bounded by climatology (dotted) 
• [Note] quantile mapping by grid point can preserve some of the spatial and 

temporal correlations in a forecast model 
 

Plots courtesy Tom Hopson, NCAR 
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Extreme monthly average precip 
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• All methods here except AR have 
quantile regression as part of the 
procedure (AR regression is 
similar) 

• Extreme events generally not 
preserved under 
downscaling/calibration, but it is 
possible (BCSDm) 

• Scale response depends on details 
of method 

• Should we leave calibration to the 
particular user? 
 
 

Plot courtesy Ethan Gutmann (NCAR). 

Small Large 



Presenting forecasts to users  
(some thoughts) 

• Giving a user only calibrated forecasts 
eliminates/minimizes his ability to drive model 
improvement. 

• We want to know from users what aspect of a 
model forecast is important for their decision 
process. 

• Need to put actual forecasts in front of people.  
Let them interact with the data. Track where they 
go.  Indicates both trust and utility. 
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